284: Molecular Polarisability. Molar Kerr Constants and Dipole Moments of Vinyl Chloride and Six Polyvinyl Chlorides as Solutes in Dioxan.

By R. J. W. LE Fèvre and K. M. S. SUNDARAM.

"Geon 101," by fractional extraction, gave six polyvinyl chlorides with viscosity molecular weights (in cyclohexanone) ranging from 3.4×10^4 to 12.6×10^4 . The dielectric constants, densities, refractive indexes, Kerr effects, etc., of solutions in dioxan of these preparations can be related empirically to the logarithms of their degrees of polymerisation. Dipolemoment measurements indicate greater hindrance to internal rotations than was postulated in Debye and Bueche's general treatment. Anisotropies of polarisability, inferred from electric birefringences, are low; they allow the rejection of certain (unlikely) solute conformations among the infinitude possible. It is noted that an 8-link helix resembling Mumford's β -helix can provide a specifiable "equivalent structure" capable of satisfying observations of both the dipole moment and the Kerr effect.

The investigation of vinyl polymers through properties involving dipole moments and electric birefringence, begun recently 1 with polystyrenes and polyvinyl acetates, is here

¹ Le Fèvre, Le Fèvre, and Parkins, J., 1958, 1468; 1960, 1814.

continued with polyvinyl chlorides. Previous work relevant to ours appears non-existent except for one determination 2 of the polarity of vinyl chloride as a gas, and dielectricconstant and -loss studies by Fuoss and Kirkwood³ on the solid (plasticised) systems polyvinyl chloride-biphenyl, polyvinyl chloride-tetrahydronaphthalene, etc. Ref. 3, which records estimates of the polarity of the -CH2. CHCl- unit, is not included in Wesson's list.4

EXPERIMENTAL

Solutes.—Vinyl chloride was prepared 5 by dropping 1,2-dichloroethane into a warm 10% solution of potassium hydroxide in 1:1 water-ethanol and passing the gaseous monomer successively ⁶ over solid potassium hydroxide, anhydrous calcium chloride, and silica gel, and finally, for condensation, into a trap immersed in ethanol-solid carbon dioxide.

The polymers were obtained by "fractional extraction" according, in principle, to the methods of Desreux ⁷ and Cleland.⁸ A commercial sample of polyvinyl chloride (PVC) resin (Geon 101) was extracted several times at 25° with acetone, dioxan, toluene, 1:3 carbon disulphide-acetone, and at 50° with dioxan and ethyl methyl ketone in a step-wise manner. The resulting viscous solutions were each filtered and poured into an excess of methanol with constant stirring. The solids thus separated were further purified by re-extraction with warm dioxan and reprecipitation by methanol; after filtration, washing with methanol, and airdrying, they were kept in vacuo until their weights were constant.

"Viscosity molecular weights" M were estimated in cyclohexanone at 25°, by using the equation $[\eta] = KM^a$ with $K = 1.1 \times 10^{-5}$ and a = 1 as determined by Ciampa and Schwindt.⁹ The values given in Table 1 for intrinsic viscosities have been obtained by plotting log (η_{sp}/C) against C (the concentration of polymer in g. per 100 c.c. of solution) and extrapolating the curve to infinite dilution. The six polymer samples, designated I-VI, showed molecular weights as follow:

	" Viscosity			" Viscosity	
Polymer	mol. wt."	Extractant	Polymer	mol. wt."	Extractant
I	33,650	Acetone at 25°	\mathbf{IV}	60,340	CS_{\circ} -acetone (1:3) at 25°
II	43,020	Dioxan at 25°	v	99,100	Dioxan at 50°
III	53,230	Toluene at 25°	VI	126,400	Et Me ketone at 50°

Apparatus and Procedures.—Dielectric constants (ε), densities (d), refractive indexes (n), and Kerr constants (B) of solutions in dioxan containing weight fractions w of vinyl chloride or of polymers I—VI have been determined at 25° and with sodium light by methods described before.¹⁰ In what follows, the suffixes 1, 2, or 12 are used to indicate, respectively, a property of the solvent, solute, or solution; the prefix Δ denotes a difference between solution and solvent, e.g., $\Delta \varepsilon = \varepsilon_{12} - \varepsilon_1$, $\Delta d = d_{12} - d_1$, $\Delta n = n_{12} - n_1$, and $\Delta B = B_{12} - B_1$. The symbols α , β , γ , and δ are from the equations, $\varepsilon_{12} = \varepsilon_1(1 + \alpha w_2)$, $d_{12} = d_1(1 + \beta w_2)$, $n_{12} = n_1(1 + \gamma w_2)$, and $B_{12} = B_1(1 + \delta w_2)$, which are assumed to apply at low w_2 's and to be usable whenever Δ (property) appears rectilinear with w_2 ; γ' refers to the square of the refractive index, $n_{12}^2 =$ $n_1^2(1 + \gamma' w_2)$. Molar Kerr constants, total polarisations, etc., extrapolated to infinite dilution

² Hugill, Coop, and Sutton, Trans. Faraday Soc., 1938, 34, 1518.

 Fuoss, J. Amer. Chem. Soc., 1941, 63, 2401, 2410; Fuoss and Kirkwood, *ibid.*, pp. 369, 378, 385.
 Wesson, "Tables of Electric Dipole Moments," Technology Press, Massachusetts Inst. Technology, 1948.

Schildknecht, "Vinyl and Related Polymers," J. Wiley and Sons, Inc., New York, 1952, p. 388.

Furukawa, J. Polymer Sci., 1959, 40, 237.

7 Desreux, Rec. Trav. chim., 1949, 68, 789.

Cleland, J. Polymer Sci., 1958, 27, 349.

^a Cleland, J. Folymer Sci., 1905, 21, 549.
^b Ciampa and Schwindt, Makromol. Chem., 1956, 21, 169.
¹⁰ (a) Le Fèvre, "Dipole Moments," Methuen, London, 3rd edn., 1953, chapter 2; Buckingham, Chau, Freeman, Le Fèvre, Rao, and Tardif, J., 1956, 1405; (b) Le Fèvre and Le Fèvre, J., 1953, 4041; 1954, 1577; (c) Le Fèvre and Le Fèvre, Rev. Pure and Appl. Chem., 1955, 5, 261; (d) Le Fèvre and Le Fèvre, chapter XXXVI in "Physical Methods of Organic Chemistry," ed. Weissberger, Interscience Publ. Inc. New York, London, 3rd eda, Vol. L. p. 2450. Publ., Inc., New York, London, 3rd edn., Vol. I, p. 2459.

TABLE 1.

Dielectric constants, densities, refractive indexes, Kerr effects, and specific viscosities at 25° .

		Vinyl chl	loride in dioxa	an		
$10^5 w_2$	8428	10,477	11,978	13,078	16,286	19,122
ε ₁₂	2.5020	2.5745	2.6390	2.6570	2.7713	2.8817
a_{12}	1.02118	1.01978	1.018/1	1.01755	1.01512	1.01242
$-10^{-}\Delta n$	$\frac{2i}{\sqrt{2i}} = 2i$	00 109 \SAd/Sau	30 0.0707	40 and $\Sigma Au/\Sigma u$	02 0.091	00
whence Z	$\Delta \varepsilon / \Delta w_2 = 3$	$492, \underline{\Sigma}\Delta a/\underline{\Sigma}w$	$_{2} = -0.0797,$	and $\Delta n/\Delta w$	$a_2 = -0.031_5.$	
$10^5 w_2$	1943	3497	5384	7926	10,477	11,978
10.ΔΩ	0.0737	0.133_6	0.200_2	0.2897	0.3904	0.4018
		whence $\Delta B/$	$\Sigma w_2 = 3.77_8$	× 10-4.		
		Polyme	er I in dioxan			
$10^5 w_2$	2062	2614	3221	3873	4111	4477
ε ₁₂	2.3142	2.3433	2.3829	2.4213	2.4375	2.4606
a_{12}	1.03337	1.03545	1.03665	1.03818	1.03905	1.04074
	0.0010		0.0121		0.0101	0.010 ⁸
whence $\sum \Delta$	$\varepsilon/\sum w_2 = 5.43$	32, $\sum \Delta d / \sum w_2$	$= 0.272_{3}$, and	$\sum \Delta B / \sum w_2 =$	$0.382_{6} \times 10^{-5}$	<i>'</i> .
$10^5 w_2$	2437	3105	3442	3684		
$10^{4}\Delta n$	25 71	35 100	38 108	41 117		
ю ди	whence 2	$\sum \Delta n / \sum w_2 = 0$	$\cdot 109_7$ and $\sum \Delta s$	$\frac{n^2}{\sum w_2} = 0.31$.2 ₆ .	
		Polymer I	in cyclohexan	one		
10 ⁴ C	3240	4356	4682	7760	10.010	
<i>d</i> ₁₂	0.94315	0.94350	0.94360	0.94442	0.94512	
$10^{5}\eta_{sp}$	12,584	17,132	18,600	31,860	42,673	
		whence $[\eta_{sp}/$	$C]_{c \to 0} = 0.3$	3702.		
		Polyme	r II in dioxan	ı		
$10^5 w_2$	501	862	1348	1788	2096	2503
ε ₁₂	2.2361	2.2556	2.2821	2.3062	2.3238	2.3491
d_{12}	1.02935	1.03032	1.03105	1.03291	1.03377	1.03493
10·Δ <i>B</i> Σ	0.0008 1 (S	0.0094	0.0138	$1 \Sigma \Lambda D (\Sigma m)$	0.021 ₈	0.0249
wnence 2	$\Delta \varepsilon / \Sigma w_2 = 5$	•484, <u>∑</u> ∆a/ <u>∑</u> u	$v_2 = 0.274_0$, a	nd $\Sigma \Delta B / \Sigma w_2$	$= 1.047 \times 10$	F*.
$10^5 w_2$	2001	2346	2728	3105		
$10^{4}\Delta n$	22	26	31	35		
10 ⁻ Δ <i>n</i> [*]	02 wheneo S	$\frac{74}{\sqrt{2m}} = 0$	00 119 and 544	99 12/5au - 0.21	7	
	whence Z	$\Delta n/\Delta w_2 = 0^{\circ}$		$1/2w_2 = 0.01$	13.	
		Polymer II	in cyclohexan	ione		
10 ⁴ C	2899	3590	4605	6211	8210	
a_{12}	0.94322	0.94325	0.94300	0.94410	0.94480 43.060	
10 η _{sp}	14,200	whence [m //	20,242	799	40,000	
		whence [//ap/		102.		
	10/0	Polymer	III in dioxan	1	0007	
$10^{\circ}w_2$	1248	1657	2063	2451 9.9440	2805 9.9647	3211 9.9974
E ₁₂ d	2.2100	2.2008	2.9299 1.03364	2.2449	1.03580	1.03671
$10^{7}\Delta B$	0.016	0.022.	0.029.	0.034	0.039	0.046
whence Σ_{i}	$\Delta \varepsilon / \sum w_{2} = 5.1$	547. $\sum \Delta d / \sum m_{-}$	= 0.274. and	$d \sum \Delta B / \sum w_{e} =$	$= 1.39 \times 10^{-7}$	
105m	1965	1209	994A		/ _ /	-
10 ⁻ w ₂	1300	1020	2240	2939 34		
$10^4\Delta n^2$	46	60	77	97		
		**	••			

whence $\sum \Delta n / \sum w_2 = 0.117_1$ and $\sum \Delta n^2 / \sum w_2 = 0.334_5$.

Molecular Polarisability.

		TABLE 1.	(Continued	<i>d</i>).		
		Polymer III	in cyclohexa	none		
10^4C d_{12} $10^4\eta_{sp}$	882 3 0·94460 6099	11,618 0·94577 8504	16,344 0·94726 13,005	21,426 0·94875 17,714	23,187 0·94986 21,918	
156		whence $[n_{n}]$	$C_{\alpha} \rightarrow a = 0.5$	855.		
		Polymer	IV in dioxar	1		
105m	1105	1510	1007		9769	9105
ε_{12} d_{12}	2·2703 1·03108	2·2936 1·03226	2·3158 1·03333	2.301 2.3413 1.03464	2·3644 1·03582	2·3847 1·03669
12	whence	$\sum \Delta \varepsilon / \sum w_2 = 5$	$\cdot 612$ and $\sum \Delta a$	$l/\sum w_2 = 0.280$		
$10^5 w_2$	551	962	1548	2088	2496	2803
$10^7\Delta B$	0.009 ²	0·015 ₆	0.026_{2}	0·036 ₅	0.044_{2}	0.050_{1}
		whence $\sum \Delta B/$	$\sum w_2 = 1.74_3$	× 10-7.		
$10^5 w_2$	1864	2344	2581	2732		
$10^{4}\Delta n$	23 66	29 83	32 91	35 100		
10 4	whence \	$\sum \Delta n / \sum w_n = 0$	125, and $\Sigma\Delta a$	$n^2/\sum w_0 = 0.35$	57	
	•	Polymer IV	in cyclobera	none	.1.	
1040	6090	11 801	16 112	90 179	95 289	
d ₁₀	0.94440	0.94610	0.94757	0.94907	0.95082	
$10^{4}\eta_{sp}$	5279	9875	14,509	19,896	27,346	
		whence $[\eta_{sp}/c]$	$C]c \rightarrow 0 = 0.6$	637.		
		Polyme	r V in dioxan			
$10^5 w_2$	1013	1498	1857	2012	2314	2587
ε_{12}	2.2664	2.2943	2.3077	2.3201	2.3346	2.3603
$10^{7}\Delta B$	0.030	0.041	0.052	0.062	0.067	0.081
whence Σ	$\Delta \varepsilon / \sum w_2 = k$	$5.580, \Sigma \Delta d/\Sigma d$	$v_2 = 0.283_2$, a	and $\sum \Delta B / \sum w_2$	$=2.98_2 \times 10^{-10}$	-7.
$10^5 w_2$	1248	1832	2134	2334		
$10^5 w_2$ $10^4 \Delta n$	1248 17	1832 24	2134 28	2334 32		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1248 17 49	1832 24 69	2134 28 80	2334 32 91	_	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1248 17 49 whence 2	1832 24 69 $\sum \Delta n / \sum w_2 = 0$	2134 28 80 133 ₈ and $\Sigma \Delta r$	$2334 \\ 32 \\ 91 \\ i^2 / \sum w_2 = 0.38$	2 ₉ .	
$10^5 w_2$ $10^4 \Delta n$ $10^4 \Delta n^2$	1248 17 49 whence 2	1832 24 69 $\Sigma \Delta n / \Sigma w_2 = 0$ Polymer V	$\begin{array}{c} 2134\\ 28\\ 80\\ 133_8 \text{ and } \sum \Delta t \\ \text{in cyclohexan} \end{array}$	$2334 \\ 32 \\ 91 \\ i^2 / \sum w_2 = 0.38$	2 ₉ .	
$10^5 w_2$ $10^4 \Delta n$ $10^4 \Delta n^2$	1248 17 49 whence 2	1832 24 69 $\Sigma \Delta n / \Sigma w_2 = 0$ Polymer V 8511	2134 28 80 133 ₈ and $\sum \Delta i$ in cyclohexan 12,070	$2334 \\ 32 \\ 91 \\ u^2 / \sum w_2 = 0.38 \\ \text{sone} \\ 15,695 \\ 0.00014$	2 ₉ . 19,473	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1248 17 49 whence 2 5513 0.94638 6944	$1832 24 69 \sum \Delta n / \sum w_2 = 0 · Polymer V85110.9475911 449$	2134 28 80 133 ₈ and ∑∆1 in cyclohexan 12,070 0-94881 17 774	$2334 \\ 32 \\ 91 \\ v^2 / \sum w_2 = 0.38 \\ \text{sone} \\ 15,695 \\ 0.95014 \\ 25,552 \\ \text{sone} \\ 15,252 \\ 15,25$	2 ₉ . 19,473 0-95112 35.075	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1248 17 49 whence 2 5513 0.94638 6944	$1832 24 69 \sum \Delta n / \sum w_2 = 0 ·Polymer V85110.9475911,449whence [n_0/(2 + 1)]$	2134 28 80 133 ₈ and $\sum \Delta n$ in cyclohexan 12,070 0.94881 17,774 210.55 = 1:0	$2334 32 91 t^2/\sum w_2 = 0.38hone15,6950.9501425,553900.$	2 ₉ . 19,473 0-95112 35,075	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1248 17 49 whence 2 5513 0.94638 6944	$1832 \\ 24 \\ 69 \\ \Sigma \Delta n / \Sigma w_2 = 0 \\ Polymer V \\ 8511 \\ 0.94759 \\ 11,449 \\ whence [\eta_{sp}/c \\ Polymer \\ $	2134 28 80 133 ₈ and $\sum \Delta r$ in cyclohexan 12,070 0.94881 17,774 $C]_{\sigma \rightarrow 0} = 1.0$ VI in dioxar	$2334 \\ 32 \\ 91 \\ r^2 / \sum w_2 = 0.38 \\ \text{none} \\ 15,695 \\ 0.95014 \\ 25,553 \\ 900. \\ n$	2 ₉ . 19,473 0-95112 35,075	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1248 17 49 whence 2 5513 0.94638 6944	$1832 24 69 \sum \Delta n / \sum w_2 = 0^{-1}Polymer V85110.9475911,449whence [\eta_{sp}/(m_{sp})/(m_{sp}/m_{s$	2134 28 80 133 ₈ and $\sum \Delta r$ in cyclohexan 12,070 0.94881 17,774 C]_{\sigma \to 0} = 1.0 VI in dioxan 2472	$2334 \\ 32 \\ 91 \\ r^2 / \sum w_2 = 0.38 \\ \text{none} \\ 15,695 \\ 0.95014 \\ 25,553 \\ 900. \\ 1 \\ 2902 \\ 1 \\ 2902 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2902 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	2 ₉ . 19,473 0-95112 35,075 3506	3969
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1248 17 49 whence 2 5513 0.94638 6944 1602 2.3001	$1832 24 69 \sum \Delta n / \sum w_2 = 0 · Polymer V85110.9475911,449whence [\eta_{sp}/t] · Polymer20452.3315$	2134 28 80 1338 and $\sum \Delta r$ in cyclohexan 12,070 0.94881 17,774 C]_{\sigma \rightarrow 0} = 1.00 VI in dioxan 2472 2.3524	$2334 \\ 32 \\ 91 \\ s^2 / \sum w_2 = 0.38 \\ \text{none} \\ 15,695 \\ 0.95014 \\ 25,553 \\ 900. \\ 1 \\ 2902 \\ 2.3832 \\ 1 \end{bmatrix}$	2 ₃ . 19,473 0-95112 35,075 3506 2-4201	3969 2·4515
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1248 17 49 whence 2 5513 0.94638 6944 1602 2.3001 1.03274	$1832 24 69 \sum \Delta n / \sum w_2 = 0 · Polymer V85110.9475911,449whence [\eta_{sp}/(4 - 2)] · Polymer20452.33151.033931.03393$	2134 28 80 133 ₈ and $\sum \Delta n$ in cyclohexan 12,070 0.94881 17,774 C] $\sigma \rightarrow 0 = 1.0$ VI in dioxan 2472 2.3524 1.03537	$2334 32 91 v^2/\sum w_2 = 0.38some15,6950.9501425,553900.129022.38321.03689$	2 ₉ . 19,473 0-95112 35,075 3506 2-4201 1-03834	3969 2·4515 1·03938
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1248 17 49 whence 2 5513 0.94638 6944 1602 2.3001 1.03274 whence	$1832 24 69 \sum \Delta n / \sum w_2 = 0^{\circ}Polymer V85110.9475911,449whence [\eta_{sp}/d]Polymer20452.33151.03393\sum \Delta \varepsilon / \sum w_2 = 5$	2134 28 80 1338 and $\sum \Delta n$ in cyclohexan 12,070 0.94881 17,774 $C]_{\sigma \to 0} = 1.00$ \cdot VI in dioxan 2472 2.3524 1.03537 .970 and $\sum \Delta n$	2334 32 91 91 $1^{2}/\Sigma w_{2} = 0.38$ hone $15,695$ 0.95014 $25,553$ $900.$ 1 2902 2.3832 1.03689 $1/\Sigma w_{2} = 0.294$	2 ₉ . 19,473 0-95112 35,075 3506 2-4201 1-03834 9.	3969 2·4515 1·03938
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1248 17 49 whence 2 5513 0.94638 6944 1602 2.3001 1.03274 whence 341 0.012	$1832 24 69 \sum \Delta n / \sum w_2 = 0^{\circ} \\ Polymer V 8511 0.94759 11,449 whence [\eta_{sp}/d] \\ Polymer 2045 2.3315 1.03393 \sum \Delta \varepsilon / \sum w_2 = 5 \\ 500 \\ 0.017 \\ \end{bmatrix}$	2134 28 80 1338 and $\sum \Delta n$ in cyclohexan 12,070 0.94881 17,774 $C]_{\sigma \to 0} = 1.00$ · VI in dioxan 2472 2.3524 1.03537 ·970 and $\sum \Delta n$ 751 0.025	2334 32 91 91 $1^{2}/\sum w_{2} = 0.38$ hone $15,695$ 0.95014 $25,553$ $900.$ 2202 2.3832 1.03689 $1/\sum w_{2} = 0.294$ 1105 0.020	2 ₉ . 19,473 0-95112 35,075 3506 2-4201 1-03834 9. 1519 0.052	3969 2·4515 1·03938
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1248 17 49 whence 2 5513 0.94638 6944 1602 2.3001 1.03274 whence 341 0.012 ₈	$1832 24 69 E \Delta n / \Sigma w_2 = 0 \cdot Polymer V 8511 0.94759 11,449 whence [\eta_{sp}/(V - Polymer 2045 - 2.9315 - 0.0393) \Sigma \Delta \varepsilon / \Sigma w_2 = 5 - 500 - 0.017_6 whence \Sigma \Delta B / V = 0.000 $	2134 28 80 133 ₈ and $\sum \Delta i$ in cyclohexan 12,070 0.94881 17,774 C] $\sigma \rightarrow 0 = 1.0$ VI in dioxan 2472 2.3524 1.03537 .970 and $\sum \Delta a$ 751 0.025 ₆ $\sum w_{i} = 3.49$	2334 32 91 91 $t^{2}/\sum w_{2} = 0.38$ hone $15,695$ 0.95014 $25,553$ 900. 1 2902 2.3832 1.03689 $t/\sum w_{2} = 0.294$ 1105 0.039_{0} $\times 10^{-7}$	2 ₉ . 19,473 0-95112 35,075 3506 2-4201 1-03834 9. 1519 0-052 ₂	3969 2:4515 1:03938
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1248 17 49 whence 2 5513 0.94638 6944 1602 2.3001 1.03274 whence 341 0.012 ₈	$1832 24 69 E \Delta n / \Sigma w_2 = 0 \cdot Polymer V 8511 0.94759 11,449 whence [\eta_{sp}/(V - Polymer 2045 2.3315 1.03393 E \Delta \varepsilon / \Sigma w_2 = 5 500 0.017_6 whence \Sigma \Delta B / \Sigma$	2134 28 80 133 ₈ and $\sum \Delta i$ in cyclohexan 12,070 0.94881 17,774 C] $\sigma \rightarrow 0 = 1.00$ VI in dioxan 2472 2.3524 1.03537 .970 and $\sum \Delta a$ 751 0.025 ₆ $\sum w_2 = 3.49_2$	2334 32 91 91 $1^{2}/\sum w_{2} = 0.38$ hone $15,695$ 0.95014 $25,553$ 900. 1 2902 2.3832 1.03689 $1/\sum w_{2} = 0.294$ 1105 0.039_{0} $\times 10^{-7}.$	2 ₉ . 19,473 0-95112 35,075 3506 2-4201 1-03834 9. 1519 0-052 ₂	3969 2-4515 1-03938
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1248 17 49 whence 2 5513 0.94638 6944 1602 2.3001 1.03274 whence 341 0.012 ₈ 1145 16	$1832 24 69 E \Delta n / \Sigma w_2 = 0 \cdot Polymer V 8511 0.94759 11,449 whence [\eta_{sp}/\ell Polymer 2045 2.9315 1.0393 E \Delta \varepsilon / \Sigma w_2 = 5 500 0.017_6 whence \Sigma \Delta B / J 136420$	2134 28 80 133 ₈ and $\sum \Delta i$ in cyclohexan 12,070 0.94881 17,774 C] $\sigma \rightarrow 0 = 1.00$ VI in dioxan 2472 2.3524 1.03537 .970 and $\sum \Delta a$ 751 0.025 ₆ $\sum w_2 = 3.49_2$ 1624 22	2334 32 91 91 $1^{2}/\sum w_{2} = 0.38$ hone $15,695$ 0.95014 $25,553$ 900. 1 2902 2.3832 1.03689 $1/\sum w_{2} = 0.294$ 1105 0.039_{0} $\times 10^{-7}.$ 1954 90	2, 19,473 0-95112 35,075 3506 2-4201 1-03834 1519 0-052 ₂	3969 2·4515 1·03938
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1248 17 49 whence 2 5513 0.94638 6944 1602 2.3001 1.03274 whence 341 0.012 ₈ 1145 16 46	$1832 \\ 24 \\ 69 \\ \sum \Delta n / \sum w_2 = 0 \cdot \\ Polymer V \\ 8511 \\ 0.94759 \\ 11,449 \\ whence [\eta_{sp}/c \\ Polymer \\ 2045 \\ 2.3315 \\ 1.03393 \\ \sum \Delta \varepsilon / \sum w_2 = 5 \\ 500 \\ 0.017_6 \\ whence \sum \Delta B / \\ 1364 \\ 20 \\ 57 \\ \end{bmatrix}$	2134 28 80 133 ₈ and $\sum \Delta i$ in cyclohexan 12,070 0.94881 17,774 C] $\sigma \rightarrow 0 = 1.00$ VI in dioxan 2472 2.3524 1.03537 .970 and $\sum \Delta a$ 751 0.025 ₆ $\sum w_2 = 3.49_2$ 1624 23 66	2334 32 91 91 $15,695$ 0.95014 $25,553$ 900. 1 2902 2.3832 1.03689 $2/\Sigma w_2 = 0.294$ 1105 0.039_0 $\times 10^{-7}.$ 1954 28 80	2, 19,473 0-95112 35,075 3506 2-4201 1-03834 - 1519 0-0522	3969 2·4515 1·03938
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1248 17 49 whence 2 5513 0.94638 6944 1602 2.3001 1.03274 whence 341 0.0128 1145 16 46 whence 2	$1832 \\ 24 \\ 69 \\ \sum \Delta n / \sum w_2 = 0 \cdot \\ Polymer V \\ 8511 \\ 0.94759 \\ 11,449 \\ whence [\eta_{sp}/t] \\ Polymer \\ 2045 \\ 2.3315 \\ 1.03393 \\ \sum \Delta \varepsilon / \sum w_2 = 5 \\ 500 \\ 0.017_6 \\ whence \sum \Delta B / \\ 1364 \\ 20 \\ 57 \\ \sum \Delta n / \sum w_2 = 0 \cdot \\ \end{array}$	2134 28 80 133 ₈ and $\sum \Delta i$ in cyclohexan 12,070 0.94881 17,774 C]_{\sigma \to 0} = 1.0 VI in dioxan 2472 2.3524 1.03537 .970 and $\sum \Delta i$ $\sum w_2 = 3.49_2$ 1624 23 66 142 ₉ and $\sum \Delta i$	2334 32 91 91 91 91 91 91 92 91 92 90 91 91 91 91 91 91 91 91	2 ₉ . 19,473 0-95112 35,075 3506 2.4201 1.03834 9. 1519 0.052 ₂ 9 ₁ .	3969 2·4515 1·03938
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1248 17 49 whence 2 5513 0.94638 6944 1602 2.3001 1.03274 whence 341 0.012 ₈ 1145 16 46 whence 2	$1832 \\ 24 \\ 69 \\ \sum \Delta n / \sum w_2 = 0 \cdot \\ Polymer V \\ 8511 \\ 0.94759 \\ 11,449 \\ whence [\eta_{sp}/d \\ Polymer \\ 2045 \\ 2.3315 \\ 1.03393 \\ \sum \Delta e / \sum w_2 = 5 \\ 500 \\ 0.017_6 \\ whence \sum \Delta B / \\ 1364 \\ 20 \\ 57 \\ \sum \Delta n / \sum w_2 = 0 \cdot \\ Polymer VI \\ \end{cases}$	2134 28 80 133 ₈ and $\sum \Delta r$ in cyclohexan 12,070 0.94881 17,774 C] $\sigma \rightarrow 0 = 1.00$ · VI in dioxan 2472 2.3524 1.03537 .970 and $\sum \Delta a$ 751 0.025 ₆ $\Sigma w_2 = 3.49_2$ 1624 23 66 142 ₉ and $\Sigma \Delta r$ in cyclohexan	2334 32 91 91 $15,695$ 0.95014 $25,553$ $900.$ 2902 2.3832 1.03689 $1/2w_2 = 0.294$ 1105 0.039_0 $\times 10^{-7}.$ 1954 28 80 $1^2/\Sigma w_2 = 0.40$ hone	2 ₉ . 19,473 0-95112 35,075 3506 2·4201 1·03834 ⁹ . 1519 0·052 ₂ 9 ₁ .	3969 2·4515 1·03938
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1248 17 49 whence 2 5513 0.94638 6944 1602 2.3001 1.03274 whence 341 0.012 ₈ 1145 16 46 whence 2 2819	$1832 \\ 24 \\ 69 \\ \sum \Delta n / \sum w_2 = 0 \cdot \\ Polymer V \\ 8511 \\ 0.94759 \\ 11,449 \\ whence [\eta_{sp}/d \\ Polymer \\ 2045 \\ 2.3315 \\ 1.03393 \\ \sum \Delta e / \sum w_2 = 5 \\ 500 \\ 0.017_6 \\ whence \sum \Delta B / \\ 1364 \\ 20 \\ 57 \\ \sum \Delta n / \sum w_2 = 0 \cdot \\ Polymer VI \\ 5090 \\ 0 \end{bmatrix}$	2134 28 80 1338 and $\sum \Delta x$ in cyclohexan 12,070 0.94881 17,774 C] $\sigma \rightarrow 0 = 1.00$ VI in dioxan 2472 2.3524 1.03537 970 and $\sum \Delta a$ 751 0.0256 $\sum w_2 = 3.492$ 1624 23 66 1429 and $\sum \Delta x$ in cyclohexan 9222	2334 32 91 91 91 91 91 91 91 91	2 ₉ . 19,473 0-95112 35,075 3506 2·4201 1·03834 ⁹ . 1519 0·052 ₂ 9 ₁ . 14,103	3969 2·4515 1·03938
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1248 17 49 whence 2 5513 0.94638 6944 1602 2.3001 1.03274 whence 341 0.012 ₈ 1145 16 46 whence 2 2819 0.942900 4172	$1832 \\ 24 \\ 69 \\ \sum \Delta n / \sum w_2 = 0 \cdot \\ Polymer V \\ 8511 \\ 0.94759 \\ 11,449 \\ whence [\eta_{sp}/d \\ Polymer \\ 2045 \\ 2.3315 \\ 1.03393 \\ \sum \Delta \varepsilon / \sum w_2 = 5 \\ 500 \\ 0.017_6 \\ whence \sum \Delta B / \\ 1364 \\ 20 \\ 57 \\ \sum \Delta n / \sum w_2 = 0 \cdot \\ Polymer VI \\ 5090 \\ 0.94371 \\ 907 \\ z \\ 0.975 \\ \end{bmatrix}$	2134 28 80 133 ₈ and $\sum \Delta i$ in cyclohexan 12,070 0.94881 17,774 C] $\sigma \rightarrow 0 = 1.0$ VI in dioxan 2472 2.3524 1.03537 .970 and $\sum \Delta i$ 751 0.025 ₆ $\sum w_2 = 3.49_2$ 1624 23 66 142 ₉ and $\sum \Delta i$ in cyclohexan 9222 0.94515 5 5 5 5	2334 32 91 91 91 91 91 91 91 91	2 ₉ . 19,473 0-95112 35,075 3506 2-4201 1-03834 9. 1519 0-052 ₂ 9 ₁ . 14,103 0-94690 96.000	3969 2·4515 1·03938
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1248 17 49 whence 2 5513 0.94638 6944 1602 2.3001 1.03274 whence 341 0.012 ₈ 1145 16 46 whence 2 2819 0.94290 4173	$1832 \\ 24 \\ 69 \\ \sum \Delta n / \sum w_2 = 0 \cdot \\ Polymer V \\ 8511 \\ 0.94759 \\ 11,449 \\ whence [\eta_{sp}/d \\ Polymer \\ 2045 \\ 2.3315 \\ 1.03393 \\ \sum \Delta \varepsilon / \sum w_2 = 5 \\ 500 \\ 0.017_6 \\ whence \sum \Delta B / \\ 1364 \\ 20 \\ 57 \\ \sum \Delta n / \sum w_2 = 0 \cdot \\ Polymer VI \\ 5090 \\ 0.94371 \\ 8075 \\ whence [n] = 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	2134 28 80 133 ₈ and $\sum \Delta x$ in cyclohexan 12,070 0.94881 17,774 C] $\sigma \rightarrow 0 = 1.0$ VI in dioxan 2472 2.3524 1.03537 .970 and $\sum \Delta a$ 751 0.025 ₆ $\sum w_2 = 3.49_2$ 1624 23 66 142 ₉ and $\sum \Delta x$ in cyclohexan 9222 0.94515 15,505	2334 32 91 91 91 91 91 91 91 91	2 ₉ . 19,473 0-95112 35,075 3506 2-4201 1-03834 9. 1519 0-052 ₂ 9 ₁ . 14,103 0-94690 26,839	3969 2·4515 1·03938

are written $_{\infty}(_{m}K_{2})$, $_{\infty}P_{2}$, etc. Calculations are through specific quantities, e.g., $_{S}K_{2}$, p_{2} , r_{2} , which when $w_2 = 0$ are given by:

 $_{\infty}(_{8}K_{2}) = {}_{8}K_{1}(1-\beta+\gamma+\delta-Hr-J\alpha\varepsilon_{1}),$

(1)

(2)

(3)

where

 $_{8}K_{1} = 6\lambda n_{1}B_{1}/(n_{1}^{2}+2)^{2}(\varepsilon_{1}+2)^{2}d_{1}$ $H = 4n_1^2/(n_1^2 + 2),$ $J=2/(\varepsilon_1+2);$ and ${}_{\infty}p_2 = p_1(1-\beta) + 3\alpha\varepsilon_1/d_1(\varepsilon_1+2)^2$ $p_1 = (\varepsilon_1 - 1)/d_1(\varepsilon_1 + 2);$ where $_{\infty}r_{2} = r_{1}(1-\beta) + 3\gamma' n_{1}^{2}/d_{1}(n_{1}^{2}+2)^{2},$

where

Derivations of these equations may be found in refs. 10(c) or (d) for (1), and in 10(a) for (2) and (3).

 $r_1 = (n_1^2 - 1)/d_1(n_1^2 + 2)$

Solvents .- Dioxan, the only common non-polar medium in which polyvinyl chloride is sufficiently soluble, purified as described by Vogel,¹¹ has been used as far as possible. Since no equations connecting the viscosities of solutions in dioxan with the molecular weights of the solutes could be found in the literature, determinations of M_2 have been made in cyclohexanone,⁹ a bulk supply of which, dehydrated by distillation, had d_4^{25} 0.94190, and an efflux time at 25° in the Ostwald viscometer used of 239.3 sec.; details for the individual solutions may be computed from Table 1.

Observations.—These are set out in Table 1. When $w_2 = 0$, the various properties of dioxan at 25° are: $n_1 = 1.4202$, $\varepsilon_1 = 2.2090$, $d_1 = 1.02800$, and $B_1 = 0.068 \times 10^{-7}$. TABLE 2.

Calculation of results.							
Solute	Monomer	I	II	III	IV	v	VI
αε1	3.492	5.432	5.484	5.547	5.612	5.580	5.970
β	-0·077 ₅	0.264_{9}	0·266	0.266	0.273	0.275_{5}	0.286
γ	-0.022_{2}	0.077s	0.078	0.082	0.088	0.094	0.100
$\gamma' n_1^2$	-0.098	0.312	0.317_{s}	0·334 ₅	0.357_{1}	0.382^{-}_{9}	0.409,
δ	55.56	5.62_{7}	15·40 ₀	20·47,	25.63_{2}^{-1}	43·853	51·34
∞¢₂ (c.c.)	0.8957	1.1001	1.1084	1.1185	1.1276	1.1216	1.1827
∞ <i>τ</i> ₂ (c.c.)	0.249_{1}	0·237	0·238 ₀	0·241 ₀	0·243 ₆	0.247_{7}	0.249
$\infty (K_2) 10^{14} \dots$	63·91	4·26	15.63	21.48	27.43	48.61	57·08 Č
$[\eta_{sp}/\bar{C}]c \rightarrow 0 \cdots$		0.3202	0.4732	0.5855	0.6637	1.0900	1.3910
<i>M</i> ₂	$62 \cdot 48$	33 ,650	43,020	53,230	60,340	99,100	126,400
$\infty(mK_2)10^{12}$	39.93	1433	6722	11,434	16,549	48,170	72,147
$_{\infty}P_{2}$ (c.c.)	55·9 ₆	37,018	47,682	59,538	68,040	111,152	149,493
$R_{\rm D}$ (c.c.)	15.57	7994	10,239	12,831	14,699	24,544	31,549
$\mu * (D)$	1·3 ₉	37.4	42.5	47.4	50.7	64.6	75.4
		•	Taking $_{\rm D}P$	$= 1.05 R_{\rm D}$.			

DISCUSSION

Polarity and Anisotropy of Vinyl Chloride.—The dipole moment $(1:3_{9} D)$ now found for vinyl chloride dissolved in dioxan compares satisfactorily with that (1.44 D) reported by Hugill, Coop, and Sutton² for the gas between 14° and 140°, the "solvent effect" (shown ¹² by $\mu^2_{\text{soln}}/\mu^2_{\text{gas}} = 0.93_2$) being of the expected order; evidently therefore the medium does not combine with, or otherwise markedly affect, this mesomeric ^{2,13} solute.

The lowering of moment from ethyl chloride to vinyl chloride has been $CH_2 = C$ $\theta \setminus \phi$ CI $\theta \setminus \phi$ CI $\theta \setminus \phi$ CI $\theta \setminus \phi$ $\theta \cap \phi$ θ

magnitude acting along the Cl--CH₂ line; such a resultant should be located by clockwise rotation from the C-Cl axis in the adjoining formula.

¹¹ Vogel, "Practical Organic Chemistry," Longmans, London, 3rd edn., 1956.
¹³ Buckingham and Le Fèvre, J., 1952, 1932.
¹⁴ Smith "Dislated Physics Physics 1956.

- ¹⁸ Smyth, "Dielectric Behaviour and Structure," McGraw-Hill, New York, 1955, p. 276.

That μ for vinyl chloride deviates from the C-Cl direction is indicated by the following calculations. According to ref. 14 the C=C-Cl angle θ is $122^{\circ} \pm 2^{\circ}$. The longitudinal, transverse, and "vertical" polarisabilities * of the three bonds involved are:

Bond	С–н	C=C	C-Cl
<i>b</i> _T ,	0.064	0.280	0.399
$b_{\mathbf{T}}^{-}$	0.064	0.073	0.182
$b_{\overline{v}}$	0.064	0.077	0.182
Ref	10 <i>c</i>	15	15

(The set for C-Cl, having been found ¹⁵ suitable with vinylidene chloride, appear appropriate here.) Computations carried out as described on p. 2486 of ref. 10(d) show b_{\max} (i.e., b_1 by definition 10c) not to be collinear with any one bond axis, but at ϕ° anticlockwise to C-Cl in the C=C-Cl plane. Results for the cases when $\theta = 120^{\circ}$, 122° , or 124° are:

θ°	b_1	b_2	b ₃	φ°	
120	0.767	0.556	0.454	29.0	
122	0.772	0.549	0.454	$28 \cdot 2$	
124	0.778	0.543	0.454	$27 \cdot 35$	

The corresponding molar Kerr constants depend upon the angle which $\mu_{resultant}$ makes with b_1 ; if $\mu_{\text{resultant}}$ is at ψ° clockwise from the C-Cl bond, the following mK's are forecast:

θ°	120	120	122	122	124	124
ψ	0°	3° 48′	0°	5° 22′	0°	7° 2′
$10^{12} K$ (calc.)	43 ·9	39.9	45.8	3 9·9	48 ·0	3 9·9

Thus a priori calculations yield the observed $_{m}K$ of $39.9_{a} \times 10^{-12}$ provided the direction of action of $\mu_{\text{resultant}}$ is situated, relatively to C-Cl, in the sense predicted.

Physical Properties and Molecular Weights of Polyvinyl Chlorides .- As previously with polystyrenes¹ and polyethylene glycols,¹⁶ a tendency can be seen for most of the measured quantities to change smoothly with increasing molecular weight. Empirical equations may be fitted to the dielectric constant, density, refractive index, and electric birefringence factors, to the specific polarisations, refractions, and Kerr constants, and to the apparent moments, whereby these data are expressed in terms of $\log(M_{polymer}/M_{monomer})$, *i.e.*, of log (degree of polymerisation). Writing this logarithm as L, we have from Table 1:

 $\alpha \varepsilon_1 = 4.651 - 0.094L + 0.140L^2; \ \beta d_1 = 0.2510 - 0.0174L + 0.0090L^2;$ $\gamma n_1 = 0.0575 - 0.0141L + 0.0120L^2$; $\delta B_1 = 5.315L - 14.10$; $\bar{p_2} = 1.03 - 0.051L + 0.028L^2$; $r_2 = \bar{0}.2170 - 0.0056L + 0.0047L^2$; $_{\infty}(_{8}K_{2}) = 91.67L - 245.76; \ \mu = -48.5 + 1.242L + 10.78L^{2}.$

A comparison of calculated and observed values is given in Table 3. In reverse, these equations make estimates of "Cyclohexanone-viscosity molecular weights" accessible from observations on solutions in dioxan; e.g., from the simply measured factor $\gamma n_1 =$ 0.143 for polymer VI, the calculated M is 130.8×10^3 (cf. 126.4×10^3 from viscosity determinations).

Apparent Dipole Moments of Polyvinyl Chlorides.—As the last two lines of Table 3 show, the apparent polarities increase over the range of molecular complexity of polymers I-VI. For complete flexibility the moments would be $\mu_0 x^{0.5}$, where x is the degree of polymerisation and μ_0 is the component appropriate for the smallest repeating unit, in this case -CH₂·CHCl-, the polarity of which should resemble that of ethyl chloride, *i.e.*,

^{*} Polarisabilities b_1 (i = L, T, or V, for bonds, or 1, 2, or 3 for molecules) are given throughout this paper in 10⁻²³ c.c. units.

¹⁴ Sutton et al., "Interatomic Distances," Chem. Soc. Spec. Publ., No. 11, 1958, M 126.

¹⁵ Bramley, Le Fèvre, Le Fèvre, and Rao, J., 1959, 1183.
¹⁶ (a) Aroney, Le Fèvre, and Parkins, J., 1960, 2890; (b) Le Fèvre, Parkins, and Roper, Austral. J. Chem., 1960, 13, 169.

 1.9_8 D (measured in carbon tetrachloride solution,¹⁷ cf. refs. 4 and 18); $\mu_n x^{0.5}$ values for preparations I-VI accordingly appear as 45.9, 52.0, 57.8, 61.5, 78.9, and 89.0 p, respectively, and thus are higher than those from experiment. Debye and Bueche ¹⁹ have given an *a priori* treatment of a polymer chain in which rotations around valency directions are "free" except for restrictions imposed by interatomic distances and angles, and from

TABLE 3.

Cal	culated * a	and observe	d values of	αε ₁ , βd_1 , etc	•	
Polymer	I	II	III	IV	v	VI
αε ₁ calc	5.44	5.51	5.58	5.61	5.78	5.87
expt	$5 \cdot 43$	5.48	5.55	5.61	5.58	5.97
βd_1 calc	0.270	0.274	0.277	0.279	0·287 ₅	0.292
expt	0.272	0.274	0.274	0.281	0·283	0.295
γn_1 calc	0.108	0.114	0.112	0.122	0.135	0.142
expt	0.110	0.112	0.112	0.125	0.134	0.143
δB_1 calc	0.410	0.995	1.47	1.74	2.91	3.49
expt	0.383	1.05	1.40	1.74	2.98	3.49
∞p_2 calc	1.10	1.11	1.12	1.13	1.15	1.17
expt	1.10	1.11	1.12	1.13	1.12	1.18
$_{\infty}r_2$ calc	0.237	0.239	0.241	0.242	0.247	0.250
expt	0.238	0.238	0.241	0.244	0.248	0.250
$\infty(_{\rm g}K_2)$ calc	4.50	14.6	$22 \cdot 8$	27.4	47.6	57.7
expt	4.26	15.6	21.5	27.4	48 ·6	57.1
μ calc	$35 \cdot 2$	42.0	47.6	50.9	65.9	73 ·8
expt	37.4	42.5	47.4	50.7	64.6	75.4
* The heading	to Table 4	of ref. 16a in	correctly con	ntains $\log L$ i	instead of L .	

every second carbon atom of which a dipole moment μ_0 acts at angles β and γ to the preceding and succeeding C-C bonds; by this, in the present instance, with $\beta = 70^{\circ}$ and $\gamma = 110^{\circ}$, $\mu^2_{\text{apparent}}/x\mu_0^2$ should be 0.92, but in fact it lies between 0.66 and 0.72:

Polymer	I	II	III	IV	v	VI
$\mu^2_{apparent}/\varkappa \mu_0^2$	0.662	0.669	0.674	0.679	0.671	0.717

Internal rotations are therefore more limited than supposed. Thus polarity evidence indicates little more than that the average (or effective) configuration of this macromolecule is one in which the C-Cl dipoles are sufficiently opposed to bring $\mu^2_{apparent}/x\mu_0^2$ down from 0.92 to the 0.6-0.7 observed. Debye and Bueche suggest (actually for poly-4-chlorostyrene, but the argument is applicable also to polyvinyl chloride) a non-planar fourcarbon-link unit as the simplest—though not the only—repeating chain-segment capable of satisfying the experimental facts.

It seems reasonable to expect the conformations of polyvinyl chloride as a solute to be flexed versions of those occurring in the solid state. The material in bulk is substantially amorphous until drawn into fibres; these then show diffuse X-ray diffractions reconcilable with chlorine atoms alternating from side to side of a zig-zag carbon backbone. In general literature (e.g., refs. 19 and 20), this zig-zag is often said to be flat, but Natta and Corradini²¹ envisage deviations from planarity produced by rotations of each chain-bond a few degrees from the strictly *trans*-position relatively to the next but one preceding bond. Repulsions between C-H links 22 (which are sufficient to stabilise the "chair" form of cyclohexane) could cause such rotations and thus confer on portions of the linear polymer a regularity of structure, the most obvious form of which is helical.²³ Natta and

¹⁷ Le Fèvre, unpublished work.

¹⁸ Nickerson and McIntosh, Canad. J. Chem., 1957, **35**, 1325.

 ¹⁹ Debye and Bueche, J. Chem. Phys., 1951, 19, 589.
 ²⁰ Roff, "Fibres, Plastics, and Rubbers," Butterworth's Scientific Publns., London, 1956, p. 173;
 ²¹ Bawn, "The Chemistry of High Polymers," Butterworth's Scientific Publns., London, 1948, p. 192.
 ²¹ Natta and Corradini, J. Polymer Sci., 1956, 20, 251.
 ²² McCoubrey and Ubbelohde, Quart. Rev., 1951, 5, 364; Barton and Cookson, *ibid.*, 1956, 10, 44.
 ²³ Bernal, Discuss. Faraday Soc., 1958, 25, 7; Bunn and Holmes, *ibid.*, p. 95.

Corradini recognised polyvinyl chloride as syndiotactic; Bunn and Howells 24 considered any repeated alternation as confined to short sequences. In solution, chains of such segments would tend to fold and coil ²³ about themselves, and also to associate mutually, owing to intra- and inter-molecular energy-diminishing interactions (such as van der Waals forces). In fact, Doty, Wagner, and Singer,25 from light-scattering measurements. reported that polyvinyl chloride in dioxan formed clusters in varying degrees and that these clusters were less anisotropic than the individual molecules composing them, while Arlman, Boog, and Coumou²⁶ found the streaming birefringence of solutions in cyclohexanone to decrease with increasing concentration.

Apparent Anisotropic Polarisabilities of Polyvinyl Chlorides.—In the light of the above, the simplifying assumption is made that the dissolved polyvinyl chlorides possess polarisability ellipsoids of revolution, *i.e.*, $b_1 \neq b_2 = b_3$. If $\mu_{\text{resultant}}$ acts parallel to a major axis then, from the data of Table 2, semi-axes of polarisability can be deduced (cf. ref. 10d, p. 2491) as in Table 4. The differences $(b_1 - b_2)$ are obtained from the measured $_{\infty}(_mK_2)$'s via quadratic equations; hence arise the alternative signs. Separate values of b_1 and $b_2 = b_3$ then follow from the totals $b_1 + 2b_2$, which for polymers I—VI correspond to 0.93 - 0.89 of the $R_{\rm D}$'s observed.

TABLE 4.

Apparent semi-axes of polarisability.*

Polymer	$\pm (b_1 - b_2)$	$b_1 + 2b_2$	b_1	b_2	Polymer	$\pm (b_1 - b_2)$	$b_1 + 2b_2$	b_1	b_2
I	0.01	886.68	295.57	295.56	IV	0.06	$1582 \cdot 89$	527.67	527.61
II	0.03	1129.70	376 .59	376.56	v	0·10 ₅	$2607 \cdot 50$	869·23 ₅	869·13
III	0.05	1 3 98-98	466·36	466·31	VI	0.11	3323·4 0	1107·87	1107.76
* C	alc. by takin	$\log b_1 - b_2$	positive;	negative	values of b	$1 - b_2$ produ	uce a simil	ar low ani	isotropy,
but wit	$b_{2} > b_{1}$.								

The anisotropy thus revealed is low, consistently with other evidence: polyvinyl chloride in cyclohexanone causes less birefringence under flow ²⁶ than does polystyrene; the birefringence of stretched fibres of polyvinyl chloride is ca. 0 (cf. -0.03 for polystyrene²⁰); polystyrene itself, by methods involving the Kerr effect, shows only a small anisotropy in carbon tetrachloride.1

By considering Table 4 in relation to bond polarisabilities a few negative deductions may be made. For example, the solute molecules cannot have flat, all-trans, zig-zag carbon backbones carrying the chlorines alternately above and below the $[C-C]_n$ plane, because for such conformations the calculated moments and molar Kerr constants should range from 613 to 2300 D and from -359×10^{-7} to $-18,880 \times 10^{-7}$ for polymers I-VI; nor is the situation improved by twisting the C-Cl links so that the angles between them become 176-178°, which reconciles the observed and the predicted moments but leaves the _mK's (calc.) still large and algebraically incorrect in sign (-61×10^{-7} to -920×10^{-7}). In general, it is evident that the results of Tables 2 and 4 could arise were the various segments composing the macromolecules to be so arranged that the b_1 , b_2 , and b_3 of one lie respectively nearly parallel to the b_2 , b_3 , and b_1 of another, and to the b_3 , b_1 , and b_2 of a third; within an almost random polymer coil many such relative orientations should occur and cause the solute particle in toto to exhibit a low anisotropy.

Since segment sequences arrayed helically would, depending on the pitch chosen, conform qualitatively to the description just given, Barton models for polyvinyl chloride have been constructed with $[C-C]_n$ chains resembling Mumford's β -forms of n-alkanes.²⁷ The eight-link helix thus generated carries its C-Cl bonds nearly perpendicular to the helical axis. Measurement by hand of necessary angles gives for one repeating unit (containing four monomer molecules) expected polarisabilities of $b_1 = 2 \cdot 17$ (along the

²⁴ Bunn and Howells, J. Polymer Sci., 1955, 18, 307.
²⁵ Doty, Wagner, and Singer, J. Phys. Colloid Chem., 1947, 51, 32.
²⁶ Arlman, Boog, and Coumou, J. Polymer Sci., 1953, 10, 543.
²⁷ Mumford, J., 1952, 4897.

helical axis) and a mean b at right angles of 2.20. These magnitudes are roughly that (2.19) obtained by dividing b_1 or b_2 (in Table 4) by the number of repeating units (*viz.*, for polymers I—VI, 135, 172, 213, 241, 397, and 506, respectively). Moreover, by assuming that every monomer unit carries a moment of 1.98 D, and that these moments are disposed (as appears possible on the model) uniformly at 88—89° around a helical axis, correct predictions of the observed μ 's can be made. These facts are mentioned to illustrate that in the case of polyvinyl chloride in dioxan it is impossible to distinguish experimentally between conformations as different as almost random coils on one hand and helices on the other.

The authors gratefully acknowledge the award of an H.B. and F.M. Gritton Research Scholarship to K. M. S., and help from Mrs. A. Sundaram with many of the calculations.

UNIVERSITY OF SYDNEY, N.S.W., AUSTRALIA. [Received, September 11th, 1961.]