284. Molecular Polarisability. Molar Kerr Constants and Dipole Moments of Vinyl Chloride and Six Polyvinyl Chlorides as Solutes in Dioxan.

By R. J. W. Le Fèvre and K. M. S. Sundaram.

" Geon 101," by fractional extraction, gave six polyvinyl chlorides with viscosity molecular weights (in cyclohexanone) ranging from 3.4×10^{4} to 12.6×10^{4}. The dielectric constants, densities, refractive indexes, Kerr effects, etc., of solutions in dioxan of these preparations can be related empirically to the logarithms of their degrees of polymerisation. Dipolemoment measurements indicate greater hindrance to internal rotations than was postulated in Debye and Bueche's general treatment. Anisotropies of polarisability, inferred from electric birefringences, are low; they allow the rejection of certain (unlikely) solute conformations among the infinitude possible. It is noted that an 8 -link helix resembling Mumford's β-helix can provide a specifiable " equivalent structure" capable of satisfying observations of both the dipole moment and the Kerr effect.

THE investigation of vinyl polymers through properties involving dipole moments and electric birefringence, begun recently ${ }^{1}$ with polystyrenes and polyvinyl acetates, is here
${ }^{1}$ Le Fèvre, Le Fèvre, and Parkins, J., 1958, 1468; 1960, 1814.
continued with polyvinyl chlorides. Previous work relevant to ours appears non-existent except for one determination ${ }^{2}$ of the polarity of vinyl chloride as a gas, and dielectricconstant and -loss studies by Fuoss and Kirkwood ${ }^{3}$ on the solid (plasticised) systems polyvinyl chloride-biphenyl, polyvinyl chloride-tetrahydronaphthalene, etc. Ref. 3, which records estimates of the polarity of the $-\mathrm{CH}_{2} \cdot \mathrm{CHCl}-$ unit, is not included in Wesson's list. ${ }^{4}$

Experimental

Solutes.-Vinyl chloride was prepared ${ }^{5}$ by dropping 1,2-dichloroethane into a warm 10% solution of potassium hydroxide in 1:1 water-ethanol and passing the gaseous monomer successively ${ }^{6}$ over solid potassium hydroxide, anhydrous calcium chloride, and silica gel, and finally, for condensation, into a trap immersed in ethanol-solid carbon dioxide.

The polymers were obtained by "fractional extraction" according, in principle, to the methods of Desreux ${ }^{7}$ and Cleland. ${ }^{8}$ A commercial sample of polyvinyl chloride (PVC) resin (Geon 101) was extracted several times at 25° with acetone, dioxan, toluene, 1:3 carbon disulphide-acetone, and at 50° with dioxan and ethyl methyl ketone in a step-wise manner. The resulting viscous solutions were each filtered and poured into an excess of methanol with constant stirring. The solids thus separated were further purified by re-extraction with warm dioxan and reprecipitation by methanol; after filtration, washing with methanol, and airdrying, they were kept in vacuo until their weights were constant.
" Viscosity molecular weights" M were estimated in cyclohexanone at 25°, by using the equation $[\eta]=K M^{a}$ with $K=1 \cdot 1 \times 10^{-5}$ and $a=1$ as determined by Ciampa and Schwindt. ${ }^{9}$ The values given in Table 1 for intrinsic viscosities have been obtained by plotting $\log \left(\eta_{\text {sp }} / C\right)$ against C (the concentration of polymer in g. per 100 c.c. of solution) and extrapolating the curve to infinite dilution. The six polymer samples, designated I-VI, showed molecular weights as follow:

	" Viscosity			" Viscosity	
Polymer	mol. wt."	Extractant	Polymer	mol. wt."	Extractant
I	$\mathbf{3 3 , 6 5 0}$	Acetone at 25°	IV	$\mathbf{6 0 , 3 4 0}$	CS $_{2}$-acetone (1:3) at $\mathbf{2 5 ^ { \circ }}$
II	$\mathbf{4 3 , 0 2 0}$	Dioxan at 25°	V	$\mathbf{9 9 , 1 0 0}$	Dioxan at 50°.
III	$\mathbf{5 3 , 2 3 0}$	Toluene at 25°	VI	$\mathbf{1 2 6 , 4 0 0}$	Et Me ketone at 50°

Apparatus and Procedures.-Dielectric constants (ε), densities (d), refractive indexes (n), and Kerr constants (B) of solutions in dioxan containing weight fractions w of vinyl chloride or of polymers I-VI have been determined at 25° and with sodium light by methods described before. ${ }^{10}$ In what follows, the suffixes 1,2 , or 12 are used to indicate, respectively, a property of the solvent, solute, or solution; the prefix Δ denotes a difference between solution and solvent, e.g., $\Delta \varepsilon=\varepsilon_{12}-\varepsilon_{1}, \Delta d=d_{12}-d_{1}, \Delta n=n_{12}-n_{1}$, and $\Delta B=B_{12}-B_{1}$. The symbols α, β, γ, and δ are from the equations, $\varepsilon_{12}=\varepsilon_{1}\left(1+\alpha w_{2}\right), d_{12}=d_{1}\left(1+\beta w_{2}\right), n_{12}=n_{1}\left(1+\gamma w_{2}\right)$, and $B_{12}=B_{1}\left(1+\delta w_{2}\right)$, which are assumed to apply at low w_{2}^{\prime} 's and to be usable whenever Δ (property) appears rectilinear with $w_{2} ; \gamma^{\prime}$ refers to the square of the refractive index, $n_{12}^{2}=$ $n_{1}^{2}\left(1+\gamma^{\prime} w_{2}\right)$. Molar Kerr constants, total polarisations, etc., extrapolated to infinite dilution
${ }^{2}$ Hugill, Coop, and Sutton, Trans. Faraday Soc., 1938, 34, 1518.
${ }^{3}$ Fuoss, J. Amer. Chem. Soc., 1941, 63, 2401, 2410; Fuoss and Kirkwood, ibid., pp. 369, 378, 385.
4 Wesson, "Tables of Electric Dipole Moments," Technology Press, Massachusetts Inst. Technology,
${ }^{5}$ Schildknecht, " Vinyl and Related Polymers," J. Wiley and Sons, Inc., New York, 1952, p. 388.
${ }^{6}$ Furukawa, J. Polymer Sci., 1959, 40, 237.
7 Desreux, Rec. Trav. chim., 1949, 68, 789.
${ }^{8}$ Cleland, J. Polymer Sci., 1958, 27, 349.
${ }^{\circ}$ Ciampa and Schwindt, Makromol. Chem., 1956, 21, 169.
10 (a) Le Fèvre, "Dipole Moments," Methuen, London, 3rd edn., 1953, chapter 2; Buckingham, Chau, Freeman, Le Fèvre, Rao, and Tardif, J., 1956, 1405; (b) Le Fèvre and Le Fèvre, $J ., 1953,4041$; 1954, 1577; (c) Le Fèvre and Le Fèvre, Rev. Pure and Appl. Chem., 1955, 5, 261; (d) Le Fèvre and Le Fèvre, chapter XXXVI in " Physical Methods of Organic Chemistry," ed. Weissberger, Interscience Publ., Inc., New York, London, 3rd edn., Vol. I, p. 2459.

Table 1.
Dielectric constants, densities, refractive indexes, Kerr effects, and specific viscosities at 25°.

Vinyl chloride in dioxan						
$10^{5} w_{2}$	8428	10,477	11,978	13,078	16,286	19,122
ε_{12}	2.5020	2.5745	$2 \cdot 6390$	$2 \cdot 6570$	2.7713	$2 \cdot 8817$
d_{12}	1.02118	1.01978	1.01871	1.01755	1.01512	$1 \cdot 01242$
$-10^{4} \Delta n$	27	33	38	40	52	60
whence $\Sigma \Delta \varepsilon / \Sigma w_{2}=3.492, \Sigma \Delta d / \sum w_{2}=-0.0797$, and $\Sigma \Delta n / \Sigma w_{2}=-0.031_{5}$.						
$10^{5} w_{2}$	1943	3497	5384	7926	10,477	11,978
$10^{7} \Delta B$	$\mathbf{0 . 0 7 3 7}$	$0 \cdot 133_{6}$	$0 \cdot 205_{2}$	$0 \cdot 2857$	$0 \cdot 3907$	$\mathbf{0 . 4 6 7 8}$
whence $\Sigma \Delta B / \Sigma w_{2}=3.77_{8} \times 10^{-7}$.						
Polymer I in dioxan						
$10^{5} w_{2}$	2062	2614	3221	3873	4111	4477
$\varepsilon_{12} \cdot \ldots$	2.3142	2.3433	2.3829	$2 \cdot 4213$	2.4375	2.4606
d_{12}	1.03337	1.03545	1.03665	1.03818	1.03905	1.04074
$10^{7} \Delta B$	0.0078	$0 \cdot 010$ 0	0.011_{1}	$0 \cdot 015_{1}$	$0 \cdot 0161$	0.0169

whence $\Sigma \Delta \varepsilon / \Sigma w_{2}=5.432, \Sigma \Delta d / \Sigma w_{2}=0.272_{3}$, and $\Sigma \Delta B / \Sigma w_{2}=0.382_{6} \times 10^{-7}$.

$10^{5} w_{2}$	2437	3105	3442	3684
$10^{4} \Delta n$	25	35	38	41
$10^{4} \Delta n^{2}$	71	100	108	117

whence $\sum \Delta n / \sum w_{2}=0.109_{7}$ and $\sum \Delta n^{2} / \sum w_{2}=0.312_{6}$.

Polymer I in cyclohexanone					
$10^{4} \mathrm{C}$.	3240	4356	4682	7760	10,010
d_{12}	0.94315	0.94350	0.94360	0.94442	0.94512
$10^{5} \eta_{3 \mathrm{p}}$	12,584	17,132	18,600	31,860	42,673
	whence $\left[\eta_{\mathrm{sp}} / C\right]^{\prime} \rightarrow_{0}=0.3702$.				

Polymer II in dioxan

$10^{5} w_{2}$	501	862	1348	1788	2096	2503
ε_{12}	2.2361	2.2556	2.2821	2.3062	2.3238	2.3491
${ }_{12}$	1.02935	1.03032	1.03165	1.03291	1.03377	1.03493
$10^{7} \Delta B$	0.005_{8}	$0 \cdot 0094$	0.0138	$0 \cdot 020{ }_{1}$	0.0213	0.0249
whence $\Sigma \Delta \varepsilon / \Sigma w_{2}=5.484, \Sigma \Delta d / \Sigma w_{2}=0.274_{0}$, and $\Sigma \Delta B / \Sigma w_{2}=1.047 \times 10^{-7}$.						
$10^{5} w_{2}$	2001	2346	2728	3105		
$10^{4} \Delta n$	22	26	31	35		
$10^{4} \Delta n^{2}$	62	74	88	99		

whence $\Sigma \Delta n / \Sigma w_{2}=0 \cdot 112_{0}$ and $\Sigma \Delta n^{2} / \Sigma w_{2}=0.317_{3}$.

	Polymer II in cyclohexanone				
$10^{4} \mathrm{C}$.	2899	3590	4605	6211	8210
d_{12}	0.94322	0.94325	0.94356	0.94415	0.94480
$10^{5} \eta_{\text {sp }}$	14,200	17,761	23,242	31,822	43,060
	whence $\left[\eta_{\mathrm{sp}} / C\right]_{C \rightarrow 0}=0.4732$.				

Polymer III in dioxan						
$10^{5} w_{2}$	$\ldots \ldots \ldots \ldots \ldots$	1248	1657	2063	2451	2805
$\varepsilon_{12} \ldots \ldots \ldots \ldots \ldots \ldots$.	2.2780	2.3008	2.3233	2.3449	2.3647	2.3874
$d_{12} \ldots \ldots \ldots \ldots \ldots$.	1.03141	1.03248	1.03364	1.03482	1.03580	1.03671
$10^{7} \Delta B \ldots \ldots \ldots \ldots$.	0.016_{2}	0.022_{1}	0.029_{1}	0.034_{0}	0.039_{0}	$0.046_{\mathbf{s}}$

whence $\Sigma \Delta \varepsilon / \Sigma w_{2}=5.547, \Sigma \Delta d / \Sigma w_{2}=0.274_{4}$, and $\Sigma \Delta B / \Sigma w_{2}=1.39_{2} \times 10^{-7}$.

$10^{5} w_{2}$	$\cdots \cdots \cdots \cdots \cdots$	1365	1823	2246	2939
$10^{4} \Delta n$	$\cdots \cdots \cdots \cdots \cdots$	16	21	27	34
$10^{4} \Delta n^{2}$	$\cdots \cdots \cdots \cdots$	46	60	77	97

whence $\Sigma \Delta n / \Sigma w_{2}=0.117_{1}$ and $\Sigma \Delta n^{2} / \Sigma w_{2}=0.334_{n}$.

Table 1. (Continued).
Polymer III in cyclohexanone

	$\begin{gathered} 8823 \\ 0.94460 \\ 6099 \end{gathered}$				23,187	
		$\begin{gathered} 11,618 \\ 0.94577 \end{gathered}$	$\begin{aligned} & 16,344 \\ & 0.94726 \end{aligned}$	$\begin{gathered} 21,426 \\ 0.94875 \end{gathered}$		
		8504	13,005	17,714	21,918	
		whence $\left[\eta_{s \mathrm{~s}} / C\right]_{0 \rightarrow 0}=0.5855$.				
Polymer IV in dioxan						
$10^{5} w_{2}$	1105	1519	1907	2361	2762	3105
$\varepsilon_{12} \ldots \ldots \ldots \ldots \ldots \ldots \ldots .$.	$2 \cdot 2703$	$2 \cdot 2936$	2.3158	$2 \cdot 3413$	2.3644	$2 \cdot 3847$
d_{12}................	1.03108	1-03226	1.03333	1.03464	1.03582	1.03669
whence $\Sigma \Delta \varepsilon / \Sigma w_{2}=5.612$ and $\Sigma \Delta d / \Sigma w_{2}=0.280_{7}$.						
$10^{5} w_{2} \ldots \ldots \ldots \ldots . . .$.	551	962	1548	2088	2496	2803
$10^{7} \Delta B \ldots$	0.0095	0.015	0.026	0.036 ${ }_{5}$	0.044 ${ }_{2}$	0.0501
whence $\Sigma \Delta B / \Sigma w_{2}=1.74_{3} \times 10^{-7}$.						
$10^{5} w_{2} \quad$.	1864	2344	2581	2732		
$10^{4} \Delta_{n} \ldots \ldots$.	23	29	32	35		
$10^{4} \Delta n^{2} \ldots \ldots$.	66	83	91	100		

	Polymer IV in cyclohexanone				
$10^{4} \mathrm{C} .$.	6980	11,891	16,113	20,173	25,382
$d_{12} \ldots$.	$0 \cdot 94440$	0.94610	$0 \cdot 94757$	$0 \cdot 94907$	$0 \cdot 95082$
$10^{4} \eta_{\text {gp }}$	5279	9875	14,509	19,896	27,346

Polymer V in dioxan

$10^{5} w_{2}$	1013	1498	1857	2012	2314	2587
ε_{12}	$2 \cdot 2664$	2.2943	$2 \cdot 3077$	2.3201	$2 \cdot 3346$	$2 \cdot 3603$
${ }^{1} 12$	1.03078	1.03224	1.03331	1.03372	1.03446	1.03544
$10^{7} \Delta B$	$0 \cdot 0307$	$0 \cdot 0417$	0.052_{4}	$0 \cdot 062_{8}$	$0 \cdot 067{ }_{6}$	$0.081{ }_{2}$
whence $\Sigma \Delta \varepsilon / \sum w_{2}=5 \cdot 580, \Sigma \Delta d / \sum w_{2}=0.283_{2}$, and $\Sigma \Delta B / \Sigma w_{2}=2.98{ }_{2} \times 10^{-7}$.						
$10^{5} w_{2}$	1248	1832	2134	2334		
$10^{4} \Delta n$	17	24	28	32		
$10^{4} \Delta n^{2}$	49	69	80	91		

whence $\Sigma \Delta n / \sum w_{2}=0.133_{8}$ and $\Sigma \Delta n^{2} / \Sigma w_{2}=0.382_{9}$.
Polymer V in cyclohexanone

$10^{4} C \ldots \ldots \ldots \ldots \ldots$.	5513	8511	12,070	15,695	19,473
$d_{12} \ldots \ldots \ldots \ldots \ldots$.	0.94638	0.94759	0.94881	0.95014	0.9512
$10^{4} \eta_{\text {gp }}$	$\ldots . \ldots \ldots \ldots .$.	6944	11,449	17,774	25,553

whence $\left[\eta_{\mathrm{sp}} / C\right]_{c \rightarrow 0}=1.0900$.

	Polymer VI in dio				
$10^{5} w_{2}$	1602	2045	2472	2902	3506
$\varepsilon_{12}$$d_{12}$	2.3001	2.3315	2.3524	2.3832	$2 \cdot 4201$
	1.03274	1.03393	1.03537	1-03689	1.03834
	whence $\Sigma \Delta \varepsilon / \Sigma w_{2}=5.970$ and $\Sigma \Delta d / \Sigma w_{2}=0.294_{0}{ }_{0}$.				
$\begin{aligned} & { }^{10^{5} w_{3}}{ }^{1}{ }^{2} \Lambda_{B} \end{aligned}$	${ }_{0}^{341}$	500	751	1105	1519
$10^{7} \Delta B$	0.0128	$0^{0.0176}$	$0.025{ }_{6}$	0.039 ${ }_{0}$	0.052 ${ }_{2}$

whence $\Sigma \Delta B / \Sigma w_{2}=3 \cdot 49_{2} \times 10^{-7}$.

$\begin{aligned} & 10^{5} w_{3} \\ & 1^{0} \Delta 0^{4} \Delta n \\ & 10^{4} \Delta n^{2} \end{aligned}$	$\begin{array}{r} 1145 \\ 16 \\ 46 \end{array}$	136420	1624	1954	
			23	28	
		57	66	80	
	whence $\Sigma \Delta n / \Sigma w_{2}=0 \cdot 142_{9}$ and $\Sigma \Delta n^{2} / \Sigma w_{2}=0 \cdot 409_{1}$.				
	Polymer VI in cyclohexanone				
$10^{4} \mathrm{C}$	2819	5090	9222	11,638	14,103
	$0 \cdot 94290$	0.94371	0.94515	0.94605	0.94690
$10^{4} \eta_{\text {3p }}$	4173	8075	15,505	20,963	26,839

are written $\infty\left(m K_{2}\right),{ }_{\infty} P_{2}$, etc. Calculations are through specific quantities, e.g., ${ }_{\mathbf{s}} K_{2}, p_{2}, \boldsymbol{r}_{2}$, which when $w_{2}=0$ are given by:
where

$$
\begin{equation*}
\infty\left({ }_{\mathrm{s}} K_{2}\right)={ }_{\mathrm{s}} K_{1}\left(1-\beta+\gamma+\delta-H r-J \alpha \varepsilon_{1}\right), \tag{1}
\end{equation*}
$$

$$
{ }_{\mathrm{s}} K_{1}=6 \lambda n_{1} B_{1} /\left(n_{1}^{2}+2\right)^{2}\left(\varepsilon_{1}+2\right)^{2} d_{1},
$$

$$
H=4 n_{1}^{2} /\left(n_{1}^{2}+2\right),
$$

and

$$
J=2 /\left(\varepsilon_{1}+2\right) ;
$$

$$
\begin{equation*}
\infty p_{2}=p_{1}(1-\beta)+3 \alpha \varepsilon_{1} / d_{1}\left(\varepsilon_{1}+2\right)^{2} \tag{2}
\end{equation*}
$$

where

$$
p_{1}=\left(\varepsilon_{1}-1\right) / d_{1}\left(\varepsilon_{1}+2\right) ;
$$

$$
\begin{equation*}
{ }_{\infty} \gamma_{2}=r_{1}(1-\beta)+3 \gamma^{\prime} n_{1}^{2} / d_{1}\left(n_{1}^{2}+2\right)^{2} \tag{3}
\end{equation*}
$$

where

$$
r_{1}=\left(n_{1}^{2}-1\right) / d_{1}\left(n_{1}^{2}+2\right)
$$

Derivations of these equations may be found in refs. $\mathbf{1 0 (c)}$ or (d) for (1), and in $\mathbf{1 0 (a)}$ for (2) and (3).

Solvents.-Dioxan, the only common non-polar medium in which polyvinyl chloride is sufficiently soluble, purified as described by Vogel, ${ }^{11}$ has been used as far as possible. Since no equations connecting the viscosities of solutions in dioxan with the molecular weights of the solutes could be found in the literature, determinations of M_{2} have been made in cyclohexanone, ${ }^{9}$ a bulk supply of which, dehydrated by distillation, had $d_{4}^{25} 0.94190$, and an efflux time at 25° in the Ostwald viscometer used of 239.3 sec .; details for the individual solutions may be computed from Table 1.

Observations.-These are set out in Table 1. When $w_{2}=0$, the various properties of dioxan at 25° are: $n_{1}=1 \cdot 4202, \varepsilon_{1}=2 \cdot 2090, d_{1}=1 \cdot 02800$, and $B_{1}=0.068 \times 10^{-7}$.

Table 2.
Calculation of results.

Solute	Monomer	I	II	III	IV	V	VI
$\alpha \varepsilon_{1}$..............	$3 \cdot 492$	$5 \cdot 432$	$5 \cdot 484$	$5 \cdot 547$	$5 \cdot 612$	$5 \cdot 580$	$5 \cdot 970$
$\beta \ldots$.	-0.077_{5}	0.2649	$0 \cdot 266{ }_{6}$	$0 \cdot 266$	0.2731	$0 \cdot 275$	0.2869
$\gamma \ldots$.	-0.022_{2}	0.077	$0 \cdot 078{ }^{\text {g }}$	$0 \cdot 082_{4}$	$0.088{ }_{0}$	$0.094{ }_{2}$	$0 \cdot 100{ }_{6}$
$\gamma^{\prime} n_{1}^{2} \quad \ldots \ldots \ldots \ldots$.	-0.098	$0.312{ }^{\text {c }}$	$0.317{ }_{3}$	0.334^{4}	0.3571	0.382,	$0 \cdot 409{ }_{1}$
ס	55.56	$5 \cdot 627$	$15 \cdot 40$	20.47_{1}	$25.63{ }_{2}$	43.85	51.34_{6}
∞p_{2} (c.c.) $\ldots . .$.	0.8957	1-1001	1-1084	1-1185	1.1276	1.1216	$1 \cdot 1827$
$\infty \gamma_{2}$ (c.c.) $\ldots \ldots$.	0.2491	0.2376	$0.238{ }_{0}$	$0 \cdot 241{ }_{0}$	$0.243{ }_{6}$	$0^{0.2477}$	0.2496
$\infty\left({ }_{2}{ }_{2}\right) 10^{14}$	63.91	$4 \cdot 26$	$15 \cdot 63$	21.48	27.43	48.61	57.08
$\left[\eta_{\text {gp }} / C\right]_{c} \rightarrow 0$		$0 \cdot 3702$	$0 \cdot 4732$	0.5855	$0 \cdot 6637$	1.0900	1.3910
$M_{2} \ldots$	$62 \cdot 48$	33,650	43,020	53,230	60,340	99,100	126,400
$\infty\left({ }_{m} K_{2}\right) 10^{12}$	39.93	1433	6722	11,434	16,549	48,170	72,147
∞P_{2} (c.c.) $\ldots . .$.	$55 \cdot 9$ g	37,018	47,682	59,538	68,040	111,152	149,493
$R_{\text {D }}$ (c.c.)	15.57	7994	10,239	12,831	14,699	24,544	31,549
μ^{*} (D)	$1 \cdot 39$	37-4	42.5	$47 \cdot 4$	50.7	$64 \cdot 6$	75-4
* Taking ${ }_{\mathrm{D}} P=1.05 R_{\mathrm{D}}$.							

Discussion

Polarity and Anisotropy of Vinyl Chloride. -The dipole moment ($\left.1 \cdot 3_{g} \mathrm{D}\right)$ now found for vinyl chloride dissolved in dioxan compares satisfactorily with that (1.44 D) reported by Hugill, Coop, and Sutton ${ }^{2}$ for the gas between 14° and 140°, the "solvent effect" (shown ${ }^{12}$ by $\mu_{\text {soln }}^{2} / \mu_{\text {gas }}^{2}=0.93_{2}$) being of the expected order; evidently therefore the medium does not combine with, or otherwise markedly affect, this mesomeric ${ }^{2,13}$ solute.

The lowering of moment from ethyl chloride to vinyl chloride has been attributed ${ }^{2,13}$ to the contribution of the polar structure $-\mathrm{CH}_{2} \cdot \mathrm{CH}^{+} \mathrm{Cl}$ to the real state of the molecule; thus the observed moment may be regarded as the resultant of $\mu_{C \rightarrow C l}=c a .2 \mathrm{D}$ and a component of unknown magnitude acting along the $\mathrm{Cl}-\mathrm{CH}_{2}$ line; such a resultant should be located by clockwise rotation from the $\mathrm{C}-\mathrm{Cl}$ axis in the adjoining formula.

[^0]${ }^{13}$ Smyth, " Dielectric Behaviour and Structure," McGraw-Hill, New York, 1955, p. 276.

That μ for vinyl chloride deviates from the $\mathrm{C}-\mathrm{Cl}$ direction is indicated by the following calculations. According to ref. 14 the $\mathrm{C}=\mathrm{C}-\mathrm{Cl}$ angle θ is $122^{\circ} \pm 2^{\circ}$. The longitudinal, transverse, and " vertical" polarisabilities * of the three bonds involved are:

Bond	$\mathrm{C}-\mathrm{H}$	$\mathrm{C}=\mathrm{C}$	$\mathrm{C}-\mathrm{Cl}$
$b_{\text {L }}$	0.064	0.280	$0 \cdot 399$
$b_{\text {T }}$	0.064	0.073	$0 \cdot 185$
b_{V}	0.064	0.077	$0 \cdot 185$
Ref.	$10 c$	15	15

(The set for $\mathrm{C}-\mathrm{Cl}$, having been found ${ }^{15}$ suitable with vinylidene chloride, appear appropriate here.) Computations carried out as described on p. 2486 of ref. $10(d)$ show $b_{\max }$ (i.e., b_{1} by definition ${ }^{10}$ c not to be collinear with any one bond axis, but at ϕ° anticlockwise to $\mathrm{C}-\mathrm{Cl}$ in the $\mathrm{C}=\mathrm{C}-\mathrm{Cl}$ plane. Results for the cases when $\theta=120^{\circ}, \mathbf{1 2 2}^{\circ}$, or 124° are :

θ°	b_{1}	b_{2}	b_{3}	ϕ°
120	0.767	0.556	0.454	29.0
122	0.772	0.549	0.454	28.2
124	0.778	0.543	0.454	27.35

The corresponding molar Kerr constants depend upon the angle which $\mu_{\text {resultant }}$ makes with b_{1}; if $\mu_{\text {resultant }}$ is at ψ° clockwise from the $\mathrm{C}-\mathrm{Cl}$ bond, the following m 's are forecast:

$\theta^{\circ} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.	120	120	122	122	124	124
$\psi \ldots \ldots \ldots \ldots \ldots \ldots .$.	0°	$3^{\circ} 48^{\prime}$	0°	$5^{\circ} 22^{\prime}$	0°	$7^{\circ} 2^{\prime}$
$10^{12} K($ calc. $) \ldots \ldots \ldots \ldots$	$43 \cdot 9$	$39 \cdot 9$	$45 \cdot 8$	$39 \cdot 9$	$48 \cdot 0$	$39 \cdot 9$

Thus a priori calculations yield the observed ${ }_{m} K$ of $39.9_{3} \times 10^{-12}$ provided the direction of action of $\mu_{\text {resultant }}$ is situated, relatively to $\mathrm{C}-\mathrm{Cl}$, in the sense predicted.

Physical Properties and Molecular Weights of Polyvinyl Chlorides.-As previously with polystyrenes ${ }^{1}$ and polyethylene glycols, ${ }^{16}$ a tendency can be seen for most of the measured quantities to change smoothly with increasing molecular weight. Empirical equations may be fitted to the dielectric constant, density, refractive index, and electric birefringence factors, to the specific polarisations, refractions, and Kerr constants, and to the apparent moments, whereby these data are expressed in terms of $\log \left(M_{\text {polymer }} / M_{\text {monomer }}\right)$, i.e., of \log (degree of polymerisation). Writing this logarithm as L, we have from Table 1:

$$
\begin{aligned}
& \alpha \varepsilon_{1}=4.651-0.094 L+0.140 L^{2} ; \beta d_{1}=0.2510-0.0174 L+0.0090 L^{2} ; \\
& \gamma n_{1}=0.0575-0.0141 L+0.0120 L^{2} ; \delta B_{1}=5.315 L-14 \cdot 10 ; \\
& \infty P_{2}=1.03-0.051 L+0.028 L^{2} ; \infty r_{2}=0.2170-0.0056 L+0.0047 L^{2} ; \\
& \infty\left({ }_{s} K_{2}\right)=91.67 L-245.76 ; \mu=-48.5+1.242 L+10.78 L^{2} .
\end{aligned}
$$

A comparison of calculated and observed values is given in Table 3. In reverse, these equations make estimates of "Cyclohexanone-viscosity molecular weights" accessible from observations on solutions in dioxan; e.g., from the simply measured factor $\gamma n_{1}=$ 0.143 for polymer VI, the calculated M is 130.8×10^{3} (cf. 126.4×10^{3} from viscosity determinations).

Apparent Dipole Moments of Polyvinyl Chlorides.-As the last two lines of Table 3 show, the apparent polarities increase over the range of molecular complexity of polymers I-VI. For complete flexibility the moments would be $\mu_{0} x^{0.5}$, where x is the degree of polymerisation and μ_{0} is the component appropriate for the smallest repeating unit, in this case $-\mathrm{CH}_{2} \cdot \mathrm{CHCl}^{-}$, the polarity of which should resemble that of ethyl chloride, i.e.,

[^1]$1.9_{8} \mathrm{D}$ (measured in carbon tetrachloride solution, ${ }^{17}$ cf. refs. 4 and 18); $\mu_{0} x^{0.5}$ values for preparations I-VI accordingly appear as $45.9,52.0,57.8,61.5,78.9$, and 89.0 D , respectively, and thus are higher than those from experiment. Debye and Bueche ${ }^{19}$ have given an a priori treatment of a polymer chain in which rotations around valency directions are " free" except for restrictions imposed by interatomic distances and angles, and from

TAble 3.
Calculated * and observed values of $\alpha \varepsilon_{1}, \beta d_{1}$, etc.

Polymer	I	II	III	IV	V	VI
$\alpha \varepsilon_{1}$ calc.	$5 \cdot 44$	$5 \cdot 51$	$5 \cdot 58$	$5 \cdot 61$	5.78	$5 \cdot 87$
expt.	$5 \cdot 43$	$5 \cdot 48$	$5 \cdot 55$	$5 \cdot 61$	5.58	$5 \cdot 97$
βd_{1} calc.	$0 \cdot 270$	$0 \cdot 274$	$0 \cdot 277$	0.279	$0 \cdot 287{ }_{5}$	$0 \cdot 292$
expt.	$0 \cdot 272$	$0 \cdot 274$	$0 \cdot 274$	$0 \cdot 281$	$0.283{ }^{\text {b }}$	0.295
γn_{1} calc.	$0 \cdot 108$	$0 \cdot 114$	$0 \cdot 117$	$0 \cdot 122$	$0 \cdot 135$	$0 \cdot 142$
expt.	$0 \cdot 110$	$0 \cdot 112$	$0 \cdot 117$	$0 \cdot 125$	$0 \cdot 134$	$0 \cdot 143$
δB_{1} calc.	0.410	0.995	$1 \cdot 47$	1.74	2.91	$3 \cdot 49$
expt.	$0 \cdot 383$	1.05	$1 \cdot 40$	$1 \cdot 74$	2.98	$3 \cdot 49$
∞p_{2} calc.	$1 \cdot 10$	$1 \cdot 11$	$1 \cdot 12$	$1 \cdot 13$	$1 \cdot 15$	$1 \cdot 17$
expt.	$1 \cdot 10$	$1 \cdot 11$	$1 \cdot 12$	$1 \cdot 13$	$1 \cdot 12$	$1 \cdot 18$
$\infty \boldsymbol{r}_{2}$ calc.	$0 \cdot 237$	0.239	0.241	0.242	0.247	$0 \cdot 250$
expt.	$0 \cdot 238$	0.238	0.241	$0 \cdot 244$	$0 \cdot 248$	$0 \cdot 250$
$\infty\left(8 K_{2}\right)$ calc.	4.50	$14 \cdot 6$	22.8	$27 \cdot 4$	$47 \cdot 6$	57.7
expt.	$4 \cdot 26$	$15 \cdot 6$	21.5	$27 \cdot 4$	$48 \cdot 6$	$57 \cdot 1$
μ calc.	$35 \cdot 2$	$42 \cdot 0$	$47 \cdot 6$	$50 \cdot 9$	$65 \cdot 9$	$73 \cdot 8$
expt. .	$37 \cdot 4$	42.5	47-4	$50 \cdot 7$	$64 \cdot 6$	75•4

* The heading to Table 4 of ref. $16 a$ incorrectly contains $\log L$ instead of L.
every second carbon atom of which a dipole moment μ_{0} acts at angles β and γ to the preceding and succeeding $\mathrm{C}-\mathrm{C}$ bonds; by this, in the present instance, with $\beta=70^{\circ}$ and $\gamma=110^{\circ}, \mu_{\text {apparent }}^{2} / x \mu_{0}^{2}$ should be 0.92 , but in fact it lies between 0.66 and 0.72 :

Polymer	I	II	III	IV	V	VI
$\mu_{\text {apparent }}^{2} / x \mu_{0}{ }^{2} \ldots \ldots \ldots$.	0.662	0.669	0.674	0.679	0.671	0.717

Internal rotations are therefore more limited than supposed. Thus polarity evidence indicates little more than that the average (or effective) configuration of this macromolecule is one in which the $\mathrm{C}-\mathrm{Cl}$ dipoles are sufficiently opposed to bring $\mu_{\text {apparent }} / x \mu_{0}{ }^{2}$ down from 0.92 to the $0.6-0.7$ observed. Debye and Bueche suggest (actually for poly-4-chlorostyrene, but the argument is applicable also to polyvinyl chloride) a non-planar four-carbon-link unit as the simplest-though not the only-repeating chain-segment capable of satisfying the experimental facts.

It seems reasonable to expect the conformations of polyvinyl chloride as a solute to be flexed versions of those occurring in the solid state. The material in bulk is substantially amorphous until drawn into fibres; these then show diffuse X-ray diffractions reconcilable with chlorine atoms alternating from side to side of a zig-zag carbon backbone. In general literature (e.g., refs. 19 and 20), this zig-zag is often said to be flat, but Natta and Corradini ${ }^{21}$ envisage deviations from planarity produced by rotations of each chain-bond a few degrees from the strictly trans-position relatively to the next but one preceding bond. Repulsions between $\mathrm{C}-\mathrm{H}$ links ${ }^{22}$ (which are sufficient to stabilise the "chair" form of cyclohexane) could cause such rotations and thus confer on portions of the linear polymer a regularity of structure, the most obvious form of which is helical. ${ }^{23}$ Natta and

[^2]Corradini recognised polyvinyl chloride as syndiotactic; Bunn and Howells ${ }^{24}$ considered any repeated alternation as confined to short sequences. In solution, chains of such segments would tend to fold and coil ${ }^{23}$ about themselves, and also to associate mutually, owing to intra- and inter-molecular energy-diminishing interactions (such as van der Waals forces). In fact, Doty, Wagner, and Singer, ${ }^{25}$ from light-scattering measurements, reported that polyvinyl chloride in dioxan formed clusters in varying degrees and that these clusters were less anisotropic than the individual molecules composing them, while Arlman, Boog, and Coumou ${ }^{26}$ found the streaming birefringence of solutions in cyclohexanone to decrease with increasing concentration.

Apparent Anisotropic Polarisabilities of Polyvinyl Chlorides.-In the light of the above, the simplifying assumption is made that the dissolved polyvinyl chlorides possess polarisability ellipsoids of revolution, i.e., $b_{1} \neq b_{2}=b_{3}$. If $\mu_{\text {resultant }}$ acts parallel to a major axis then, from the data of Table 2, semi-axes of polarisability can be deduced (cf. ref. 10 d , p. 2491) as in Table 4. The differences ($b_{1}-b_{2}$) are obtained from the measured ${ }_{\infty}\left({ }_{m} K_{2}\right)$'s via quadratic equations; hence arise the alternative signs. Separate values of b_{1} and $b_{2}=b_{3}$ then follow from the totals $b_{1}+2 b_{2}$, which for polymers I-VI correspond to $0.93-0.89$ of the R_{D} 's observed.

Table 4.
Apparent semi-axes of polarisability.*

Polymer	$\pm\left(b_{1}-b_{2}\right)$	$b_{1}+2 b_{2}$	b_{1}	b_{2}	Polymer	$\pm\left(b_{1}-b_{2}\right)$	$b_{1}+2 b_{2}$	b_{1}	b_{2}
I	0.01	886.68	295.57	295.56	IV	0.06	1582.89	527.67	527.61
II	0.03	1129.70	$\mathbf{3 7 6 . 5 9}$	$\mathbf{3 7 6 . 5 6}$	V	0.10_{5}	2607.50	869.23_{5}	869.13
III	0.05	1398.98	$\mathbf{4 6 6 . 3 6}$	$\mathbf{4 6 6 . 3 1}$	VI	0.11	$\mathbf{3 3 2 3 . 4 0}$	$\mathbf{1 1 0 7 . 8 7}$	$\mathbf{1 1 0 7 . 7 6}$

* Calc. by taking $b_{1}-b_{2}$ positive; negative values of $b_{1}-b_{2}$ produce a similar low anisotropy, but with $b_{2}>b_{1}$.

The anisotropy thus revealed is low, consistently with other evidence: polyvinyl chloride in cyclohexanone causes less birefringence under flow ${ }^{26}$ than does polystyrene; the birefringence of stretched fibres of polyvinyl chloride is $c a .0$ (cf. -0.03 for polystyrene ${ }^{20}$); polystyrene itself, by methods involving the Kerr effect, shows only a small anisotropy in carbon tetrachloride. ${ }^{1}$

By considering Table 4 in relation to bond polarisabilities a few negative deductions may be made. For example, the solute molecules cannot have flat, all-trans, zig-zag carbon backbones carrying the chlorines alternately above and below the $[\mathrm{C}-\mathrm{C}]_{n}$ plane, because for such conformations the calculated moments and molar Kerr constants should range from 613 to 2300 D and from -359×10^{-7} to $-18,880 \times 10^{-7}$ for polymers I-VI; nor is the situation improved by twisting the $\mathrm{C}-\mathrm{Cl}$ links so that the angles between them become $176-178^{\circ}$, which reconciles the observed and the predicted moments but leaves the ${ }_{m} K^{\prime}$ s (calc.) still large and algebraically incorrect in sign (-61×10^{-7} to -920×10^{-7}). In general, it is evident that the results of Tables 2 and 4 could arise were the various segments composing the macromolecules to be so arranged that the b_{1}, b_{2}, and b_{3} of one lie respectively nearly parallel to the b_{2}, b_{3}, and b_{1} of another, and to the b_{3}, b_{1}, and b_{2} of a third; within an almost random polymer coil many such relative orientations should occur and cause the solute particle in toto to exhibit a low anisotropy.

Since segment sequences arrayed helically would, depending on the pitch chosen, conform qualitatively to the description just given, Barton models for polyvinyl chloride have been constructed with $[\mathrm{C}-\mathrm{C}]_{n}$ chains resembling Mumford's β-forms of n -alkanes. ${ }^{27}$ The eight-link helix thus generated carries its $\mathrm{C}-\mathrm{Cl}$ bonds nearly perpendicular to the helical axis. Measurement by hand of necessary angles gives for one repeating, unit (containing four monomer molecules) expected polarisabilities of $b_{1}=2.17$ (along the

[^3]helical axis) and a mean b at right angles of $2 \cdot 20$. These magnitudes are roughly that (2-19) obtained by dividing b_{1} or b_{2} (in Table 4) by the number of repeating units (viz., for polymers I-VI, 135, 172, 213, 241, 397, and 506, respectively). Moreover, by assuming that every monomer unit carries a moment of 1.98 D , and that these moments are disposed (as appears possible on the model) uniformly at $88-89^{\circ}$ around a helical axis, correct predictions of the observed μ 's can be made. These facts are mentioned to illustrate that in the case of polyvinyl chloride in dioxan it is impossible to distinguish experimentally between conformations as different as almost random coils on one hand and helices on the other.

The authors gratefully acknowledge the award of an H.B. and F.M. Gritton Research Scholarship to K. M. S., and help from Mrs. A. Sundaram with many of the calculations.

[^0]: ${ }_{11}$ Vogel, " Practical Organic Chemistry," Longmans, London, 3rd edn., 1956.
 ${ }_{12}$ Buckingham and Le Fèvre, J., 1952, 1932.

[^1]: * Polarisabilities b_{1} ($\mathrm{i}=\mathrm{L}, \mathrm{T}$, or V , for bonds, or 1,2 , or 3 for molecules) are given throughout this paper in 10^{-23} c.c. units.

 14 Sutton et al., " Interatomic Distances," Chem. Soc. Spec. Publ., No. 11, 1958, M 126.
 ${ }^{15}$ Bramley, Le Fèvre, Le Fèvre, and Rao, J., 1959, 1183.
 ${ }^{16}$ (a) Aroney, Le Fèvre, and Parkins, J., 1960, 2890; (b) Le Fèvre, Parkins, and Roper, Austral. J. Chem., 1960, 13, 169.

[^2]: 17 Le Fèvre, unpublished work.
 18 Nickerson and McIntosh, Canad. J. Chem., 1957, 35, 1325.
 ${ }^{19}$ Debye and Bueche, J. Chem. Phys., 1951, 19, 589.
 20 Roff, "Fibres, Plastics, and Rubbers," Butterworth's Scientific Publns., London, 1956, p. 173 ;
 Bawn, "The Chemistry of High Polymers," Butterworth's Scientific Publns., London, 1948, p. 192.
 ${ }^{21}$ Natta and Corradini, J. Polymer Sci., 1956, 20, 251.
 ${ }^{22}$ McCoubrey and Ubbelohde, Quart. Rev., 1951, 5, 364; Barton and Cookson, ibid., 1956, $10,44$.
 ${ }^{23}$ Bernal, Discuss. Faraday Soc., 1958, 25, 7; Bunn and Holmes, ibid., p. 95.

[^3]: ${ }^{24}$ Bunn and Howells, J. Polymer Sci., 1955, 18, 307.
 ${ }_{25}$ Doty, Wagner, and Singer, J. Phys. Colloid Chem., 1947, 51, 32.
 ${ }^{26}$ Arlman, Boog, and Coumou, J. Polymer Sci., 1953, 10, 543.
 ${ }^{27}$ Mumford, J., 1952, 4897.

